https://www.linkedin.com/feed/update/urn:li:activity:6483992917382963201
A proposal question by Sunil Kishanchandani
Let a, b and $c \in \mathbb{R}$, such that $a^{2}+b^{2}+c^{2}=1$. Prove that

$$
\frac{1}{5-6 b c}+\frac{1}{5-6 c a}+\frac{1}{5-6 a b} \leq 1 .
$$

Solution by Arkady Alt, San Jose,California, USA.
First note that $5-6 b c=5\left(a^{2}+b^{2}+c^{2}\right)-6 b c=5 a^{2}+2\left(b^{2}+c^{2}\right)+3(b-c)^{2}=$ $3 a^{2}+1+3(b-c)^{2}>0$ and cyclic we have $5-6 c a, 5-6 a b$.
Furthermore, since $|b| \cdot|c| \geq b c \Leftrightarrow 5-6|b| \cdot|c| \leq 5-6 b c \Leftrightarrow$ $\frac{1}{5-6|b| \cdot|c|} \geq \frac{1}{5-6 b c}$ (numbers $5-6|b| \cdot|c|, 5-6 b c$ are positive) then $\sum \frac{1}{5-6 b c} \leq \sum \frac{1}{5-6|b| \cdot|c|}$ and, therefore, inequality of the problem suffices to prove for $a, b, c \geq 0$ (because $\sum \frac{1}{5-6 b c}$ is invariant with respect to transformation $(a, b, c) \mapsto(-a,-b,-c)$.
Noting that $1-\left(\frac{1}{5-6 b c}+\frac{1}{5-6 c a}+\frac{1}{5-6 a b}\right)=$
$\frac{2\left(25+72 a b c(a+b+c)-45(a b+a c+b c)-108 a^{2} b^{2} c^{2}\right)}{(5-6 b c)(5-6 a c)(5-6 a b)}$
and, taking in account that $(5-6 b c)(5-6 a c)(5-6 a b)>0$
we can reduce the problem to the proof of inequality
(1) $25+72 a b c(a+b+c)-45(a b+a c+b c)-108 a^{2} b^{2} c^{2} \geq 0$
for any $a, b, c \geq 0$ such that $a^{2}+b^{2}+c^{2}=1$.
After homogenization inequality (1) becomes
(2) $25\left(a^{2}+b^{2}+c^{2}\right)^{3}+72 a b c(a+b+c)\left(a^{2}+b^{2}+c^{2}\right)-$

$$
45(a b+a c+b c)\left(a^{2}+b^{2}+c^{2}\right)^{2}-108 a^{2} b^{2} c^{2} \geq 0
$$

Using in (2) new normalization by $a+b+c=1$ and denoting $p:=a b+b c+c a$, $q:=a b c$ we can rewrite (1) as $25(1-2 p)^{3}+72 q(1-2 p)-45 p(1-2 p)^{2}-108 q^{2} \geq 0 \Leftrightarrow$ (3) $25-380 p^{3}+480 p^{2}-195 p+36\left(2 q(1-2 p)-3 q^{2}\right) \geq 0$.

Since $0 \leq p \leq \frac{1}{3}$ then $\frac{1-2 p}{3}>\frac{p}{9} \geq q$ and, therefore, $2 q(1-2 p)-3 q^{2}$
increase in $q \in\left[0, \frac{p}{9}\right]$. Hence, $2 q(1-2 p)-3 q^{2} \geq 2 q_{*}(1-2 p)-3 q_{*}^{2}$ where $q_{*}=\min \left\{0, \frac{(1-2 t)(1+t)^{2}}{27}\right\}$ (this value for minimal q give us criteria of solvability Vieta's System $\left\{\begin{array}{c}a+b+c=1 \\ a b+b c+c a=p=\frac{1-t^{2}}{3}, t \in[0,1] \\ a b c=q\end{array}\right.$ in real $a, b, c \geq 0$.
Since $q_{*}=0$ for $t \in[1 / 2,1] \Leftrightarrow p \in[0,1 / 4]$ then for such p we have
$25-380 p^{3}+480 p^{2}-195 p+36\left(2 q(1-2 p)-3 q^{2}\right) \geq 25-380 p^{3}+480 p^{2}-195 p=$ $5(5-19 p)(2 p-1)^{2} \geq 0$.

Since $q_{*}=\frac{(1-2 t)(1+t)^{2}}{27}$ for $t \in[0,1 / 2] \Leftrightarrow p \in[1 / 4,1 / 3]$ then for such t we have $25-380 p^{3}+480 p^{2}-195 p+36\left(2 q(1-2 p)-3 q^{2}\right) \geq$ $25-380\left(\frac{1-t^{2}}{3}\right)^{3}+480\left(\frac{1-t^{2}}{3}\right)^{2}-195 \cdot \frac{1-t^{2}}{3}+$
$72 \cdot \frac{(1-2 t)(1+t)^{2}}{27}\left(1-2 \cdot \frac{1-t^{2}}{3}\right)-108 \cdot\left(\frac{(1-2 t)(1+t)^{2}}{27}\right)^{2}=$
$\frac{1}{27} t^{2}\left(5-14 t+26 t^{2}\right)\left(3+2 t+14 t^{2}\right) \geq 0$ because
$5-14 t+26 t^{2}, 3+2 t+14 t^{2}>0$ for any t.

